Resource Library

Keyword
GO
카테고리별










산업별














2424 Results
Filter by:
Product
Altair
Partner
Slide for More Clear All Apply
Solution

Product Type

  • All
  • Analysis and Optimization
  • Cloud and HPC
  • Enterprise & Analytics
  • Industrial Design
  • Modeling and Visualization
  • Product Design and Dev't

Discipline

  • 1d Systems
  • Additive Manufacturing
  • Advanced Mathematics & Analyics
  • Casting
  • CFD
  • Composites
  • Concept Design
  • Crash & Safety
  • Data Analytics
  • Design
  • Durability
  • Electromagnetics
  • Enterprise Solutions
  • Ergonomics
  • HPC
  • Hydraulics & Pneumatics
  • Industrial Design
  • Injection Molding
  • Internet of Things
  • Lightweighting
  • Manufacturing
  • Materials Library
  • Model-Based Development
  • Modeling and Simulation
  • Multi-Body Dynamics
  • Multiphysics
  • NVH
  • Optimization
  • Product Design
  • Project Management
  • Rendering
  • Staffing Solutions
  • Stress
  • Thermal
  • Vehicle Dynamics
Clear All Apply
Language
  • Chinese
  • English
  • French
  • German
  • Italian
  • Japanese
  • Korean
  • View All
Modeling the Thermal Runaway Behavior of Li-ion Batteries upon Mechanical Abused Loading
This presentation demonstrates Altair’s capability of simulating the behavior of a mechanically damaged battery from a cell to a pack integrated in a vehicle, based on collaborative research previously conducted with MIT. An innovative approach of applying electromagnetics loss to predict rising temperature due to short circuit effects during an impact is discussed, along with the development of a software tool, Battery Design, which enables OEMs and suppliers to design battery applications using multiphysics optimization, including mechanical-electrical-electrochemical-thermal behaviors.

The Key Role of Simulation in Development of Aluminum Profiles and Study of Glass Structures in Shorter Design Time
This presentation discusses advancements of the range and quality of products in the last few years at Faraone, thanks to the adoption of both Altair Inspire and SimSolid. SimSolid is a great tool that allows Faraone to study and refine the design of complex structures and a variety of different products, not just glass balustrades. In less than half an hour, it makes it possible to analyze and verify a three-story glass staircase, directly from the 3D CAD file, a simulation that would normally requires about half a day. Additionally, Moreover the original CAD drawing does not need simplification, SimSolid® works directly from the 3D CAD file, allowing fewer issues, and a better, final solution.

Machine Learning in 3D: Teaching Algorithms to Organize, Judge and Generate Parts
This talk presents the challenges of using 3D geometry in machine learning and demonstrates new techniques that Altair is using to teach algorithms about our 3D world.

Automotive Cellular Antenna Elevation Angle Study
Automotive and smartphone cellular telecommunication system shares the same root. However, some design parameters should have differences because of different design environment and user experience. One of the big design differences can be found on antenna design, especially antenna gain on elevation angle radiation pattern. This presentation is about a study of the elevation angle for better automotive telecommunication systems antenna design.

Upcoming New Wireless Solutions and Applications, including 5G
The rollout of 5G technology is going to be a boon across many industries globally, with the expansion of IoT and connected devices, and where lower latencies are opening the door to time-critical areas like autonomous vehicles, industrial IoT and healthcare. In this presentation we will share new applications and use cases from different major verticals, showing how organizations are designing innovative products using Altair electromagnetic simulation solutions related to antennas, wave propagation modelling, radio network planning and EMC applications. We will also talk about new solutions we have recently launched, and about what is available and coming in 5G.

Altair ConnectMe™ 2019
Altair ConnectMe™ 2019 is a very easy to use tool to launch Altair Products, receive update notifications and hear about the latest Altair news. With the 2019 version it now also manages Altair Partner Alliance products and products licensed by solidThinking Units. Highlights are the access to different versions of the same product and a direct access to the product help without the need to launch the product itself.

Radioss 2019/2019.1 Overview
Watch this video to see the new features available in the Radioss 2019 and 2019.1 releases.

Design for Additive Manufacturing with Topology Optimization
Presentation by Avishai Warszawski, Mechanical Designer at IAI, Israel Aerospace Industries at the ATCx in Israel, Netanya on October 30, 2019.

The goal of this project is to design a lightweight and stiff support bracket for delicate coaxes which are attached to an electronic unit. The machining design of this bracket, although very light in weight, did not provide the required stiffness and was also very expensive to manufacture. The best approach for design was only realized after the AM team was requested to find a solution. Topology optimization with Altair tools was used to define the best shape that provides the best solution. Finally, the bracket was printed in an SLM machine from AlSi10Mg. In the near future it will be qualified by dynamic tests in accordance with the defined environmental loads.

Design of Broadband GNSS Antennas
Presentation by Oren Mamane - Afeka College of Engineering at the ATCx in Israel, Netanya on October 30, 2019.

Conceptual Design and optimization of an Electric Motor
Presentation by Koby Ingram, Gevasol BV.

Conceptual Design and optimization of an Electric Motor using Altair Flux and HyperStudy. The customized electric machine with high level demands and efficiency is a challenging topic requiring top level of expertise and best in class simulation tools. This work focuses on the usage of Flux and Hyperstudy as tools for bettering the design and design process of e-motors.

Presentation at the ATCx in Israel, Netanya on October 30, 2019.

From MBD to FSI Complete firearm development
Presentation by Eitan Maler, Head of Simulation Department & by Konstantin Arhiptsov, Simulation Engineer
Israel Weapon Industries (IWI) at the ATCx in Israel, Netanya on October 30, 2019.

These days, in IWI, complete multi physics simulation is an integrated tool in the development of any new product. The motivation is to completely simulate one or two firing cycles as close to reality. First step is the Multi Body Dynamics simulation to check all mechanism are synchronized and work properly. Second is the explicit simulations - calibrating the mechanical properties of the pistol, in that the springs, contacts, materials and gun powder properties based on one firing cycle. The following is to calibrate the Non Rigid Boundary conditions (NRBC’s). This calibration of boundary conditions which are not completely fixed is crucial to understanding the actual strains and stresses on the parts. One of the approaches was to use known data of the stiffness of arm and wrist, implementing this data into a HyperStudy model to compare and calibrate the results based on a slow motion capturing of a real firing. The results are promising, with high accuracy of the behavior compared to a real capturing of the shooting, up to the point of slider getting to the end of its move – where most of the kinetic energy transform into loads on the frame. The following steps will be to calibrate, using the same method, the return of the slider to it’s original position and perform more than one firing cycle.

Shielding Effectiveness Analysis
Presentation by David Aviram , EM Expert in Israel, Altair.


Presentation at the ATCx in Israel, Netanya on October 30, 2019.

Dynamical RCS - Helicopters in pulsed Doppler radars image 
Presentation by Tal Oz, Officer, Israeli Air Force.

Many modern radars measure the radial velocity of airborne targets using Doppler shift to distinguish between real targets and clutter (trees, clouds, birds). Radial velocity and Doppler shift are directly related for regular airborne targets such as Boeing 747 but even a standing still helicopter will produce some sort of measurable Doppler shift. It is a computationally difficult task to find the relevant helicopter RCS but a feature provided by Feko, the ""Numerical Green Function"" can dramatically improve computation time of such problems. The lecture will begin with relevant Radar and RCS introduction, some highlights of important Feko features and dynamic RCS results of a CAD model of a helicopter.

Presentation at the ATCx in Israel, Netanya on October 30, 2019.


Hyperworks X Highlights & Future
Presentation by Sergi Chanukaev, Country Managing Director, Altair Israel, at the ATCx in Israel, Netanya on October 30, 2019.


Maximize Productivity in SimSolid
Getting started with SimSolid? View this video to see how you can get started and maximize your productivity with the tool.

What’s the State of Nonlinear Simulation?
Engineering.com audience survey of
nonlinear simulation practices

あらゆる設計ニーズに応える Simulation-driven Design プラットフォーム solidThinking
Altair solidThinkingは、工業デザイン、システム設計、構造・機構設計、生産シミュレーションなど、シミュレーション主導の設計に欠かせないロバストなソリューションをお得に利用できるプラットフォームです。solidThinkingに含まれる様々なアプリケーションは、多くの先進企業で、品質、コスト、製品化期間などの目標達成に貢献しています。

HyperWorks X CFD
In this course you will have the opportunity to learn about HyperWorks X CFD. Modules contained within the course provide detailed descriptions of the tools and workflows within HyperWorks X CFD. You will also have the opportunity to watch demonstrations and perform hands on exercises throughout the modules.

HyperWorks X Introduction
In this course you will have the opportunity to learn about HyperWorks X. Modules contained within the course provide detailed descriptions of the tools and workflows within HyperWorks X. You will also have the opportunity to watch demonstrations and perform hands on exercises throughout the modules.

Solid Modeling of a Mechanical Part
A short workflow illustrating the power of solid modeling and editing in Inspire Studio, applied to a junction pipe with flanges.

Create and Control NURBS Curves & Surfaces
Utilize Non-uniform Rational B-Splines (NURBS) curves and surfaces to accurately represent even the most complex shapes with flexibility and precision.

The Secrets to Fast AND Accurate Simulation Webinar
No Tradeoffs Required!

There has always been a required compromise when it comes to structural simulation. This tradeoff required users to select a tool that excels in either depth/accuracy OR speed (you have likely experienced this yourself).

With Altair SimSolid, this compromise is no longer necessary. SimSolid works directly on CAD geometry and gives its users incredibly accurate design insight in seconds to minutes.

Blazingly Fast AND Incredibly Accurate Simulation is possible! View our webinar to learn more!

e-Motor Concept Quick Design with Altair FluxMotor
Altair FluxMotor is a straightforward platform dedicated to the pre-design of electric rotating machines. It enables the designer to build a machine from standard or customized parts, add windings and materials to quickly run a selection of tests and easily compare the machine performance. In addition, they can predict the machine performance at one or more working points, and also for complete duty cycles. By coupling FluxMotor to Altair HyperStudy design exploration and optimization solution, Altair offers designers a unique process to optimize their motor concept at an early design stage. They can select and focus on the topologies that fulfill the main specifications before going further in their EM design with Altair Flux and perform Multiphysics analysis.


Automated Tests and Reports with Altair FluxMotor
Altair FluxMotor is a straightforward platform dedicated to the pre-design of electric rotating machines. It enables the designer to build a machine from standard or customized parts, add windings and materials to quickly run a selection of tests and easily compare the machine performance. In addition, they can predict the machine performance at one or more working points, and also for complete duty cycles. By coupling FluxMotor to Altair HyperStudy design exploration and optimization solution, Altair offers designers a unique process to optimize their motor concept at an early design stage. They can select and focus on the topologies that fulfill the main specifications before going further in their EM design with Altair Flux and perform Multiphysics analysis.


  •  
Discover Altair FluxMotor: Easy-to-Use Software Dedicated to e-Motor Concept Design
Altair FluxMotor is a straightforward platform dedicated to the pre-design of electric rotating machines. It enables the designer to build a machine from standard or customized parts, add windings and materials to quickly run a selection of tests and easily compare the machine performance. In addition, they can predict the machine performance at one or more working points, and also for complete duty cycles. By coupling FluxMotor to Altair HyperStudy design exploration and optimization solution, Altair offers designers a unique process to optimize their motor concept at an early design stage. They can select and focus on the topologies that fulfill the main specifications before going further in their EM design with Altair Flux and perform Multiphysics analysis.


  •  
e-Motor Concept Optimization Coupling with Altair FluxMotor and Altair HyperStudy
By coupling Altair FluxMotor for e-Motor concept design with Altair HyperStudy, more design exploration and optimization can be accomplished, while considering duty cycles.
Further information are available on Altair connect.


  •  
Analysis Origins: OptiStruct
This article, featured in the October 2019 issue of NAFEMS BENCHMARK Magazine, chronicles the origins and legacy of OptiStruct, an early pioneer of simulation-driven design. Features quotes from Altair CEO Jim Scapa and other influential voices from the early days of Altair's history.

Article originally published in Benchmark Magazine by NAFEMS, the International Association for the Engineering Modeling, Analysis & Simulation Community. Find out more at nafems.org.

Fast Forward Your Nonlinear Analysis with OptiStruct
Simulate the effects of large displacements, material nonlinearity and advanced contacts with Altair OptiStruct™.

OptiStruct is the industry standard for the optimization of topology, composites, mechanisms and additive manufactured parts, but over the past three decades, it has evolved into a comprehensive linear and nonlinear analysis solution, delivering the functionality that customers of traditional nonlinear implicit codes expect coupled with the high performance they need.

Watch this webinar to learn about how OptiStruct is being used to reduce software cost, simulate faster, and improve design process efficiency.

Inspire Motion 2019
In this course you will have the opportunity to learn about Inspire Motion. Modules contained within the course provide detailed descriptions of the tools and workflows within Inspire Motion. You will also have the opportunity to watch and perform hands on exercises.

Cost Optimization in Composite Structures
Cost optimization is a driving force in all fields of industry, with every manufacturer competing to provide a cost-effective solution to the end customer. The paper addresses how to perform an early-stage design of components with emphasis on cost optimization and without consuming too much of a construction designer's precious time. The main objective of this paper is to generate a proposal for a car seat design, based on free size optimization and cost optimization using Altair OptiStruct commercial engineering software.

Use Freehand Sketches to Design a Chair with Inspire Studio
This Inspire Studio workflow video shows how freehand sketches can be easily imported in the software and used as the starting point to design a chair.

  •  
Constraint-based Technical Sketching in Inspire Studio
This Inspire Studio workflow video shows how 2D technical sketches can be leveraged to design parametric parts in a chair design.

  •  
Use PolyNURBS for Rapid Styling of a Vehicle
This Inspire Studio workflow video shows how PolyNURBS technology can be used to easily and rapidly generate the initial body style of a vehicle.

  •  
Construction History in Inspire Studio
This Inspire Studio Workflow video illustrates an example of how construction history can be leveraged to quickly apply modifications to an existent model, like changing the number of spokes in a bike wheel without rebuilding the model.

  •  
10 Things You Didn't Know You Could Do In Altair OptiStruct
You know Altair OptiStruct as the leader in topology optimization, but did you know that the use of OptiStruct for nonlinear structural analysis has been increasing rapidly at leading companies? Teams are benefiting from a modern solver technology with linear and nonlinear capabilities – backed by Altair’s industry leading support – while reducing costs through the unique value of HyperWorks Units.

Model Based Development of Mechatronic Products
Webinar for the first launch of Compose, Activate and Embed


Sensorless AC Motor Control
Webinar from Prof. Dr. D.W.J. Pulle


Providing the Ecosystem for Next Generation Vehicle Powertrains - Altair - Romax White Paper
While designers are juggling with multiphysics constraints to deliver their next vehicles generation in time,
together Altair and Romax Technology offer a complete model-based, multiphysics solution for design, simulation and optimization of complex electro-mechanical powertrains. With extensive expertise, we are available to respond to questions from different design teams to help dive down into the technologies, including motors, controllers, gearbox, noise and vibration, oiling and cooling.

The Future of Decision Making
Engineering is in almost everything we touch, a part of every human experience. It’s in the planes and trains we travel in, the cars we drive and the appliances and electronics we use every day.

Engineering advanced products requires a meticulous, Multiphysics development process, in which products are simulated, optimized, challenged and then challenged again, leaving no room for the design to fail.

That’s where Altair and Altair’s technologies make all the difference.

This presentation will illustrate the power of Altair’s simulation technology through several practical examples applied to some of the most common product development challenges in automotive, aerospace, and other industries.

Socomec & Mahou Case Study - Enabling Connected Products, Solutions for a Connected World
The world is undergoing a digital revolution, with many enabling technologies maturing simultaneously to fuel this disruption. The Internet of Things is one such enabler that is rapidly being adopted by Industrial Equipment OEMs to enable their product lines to provide realtime in-service insights that are helping to transform and evolve their business practices. This presentation demonstrates how the Altair SmartWorks solution package is helping customers such as Socomec (Innovative Power Solutions) and Mahou San Miguel (Brewing) are embracing this digital transformation, and migrating their information systems backbone to a connected services portfolio offering.

Enabling Smart Buildings – Leveraging the Power and Breadth of IoT to Create Simple and Low Cost Smart Building Solutions
Smart Building solutions are traditionally known for being highly complex and costly, limiting their application mainly to large, commercial buildings. Over the past several years, however, rapidly changing technology has allowed thousands of new, powerful, and inexpensive IoT sensors to hit the market — making it possible to implement smart solutions in small and mid-sized buildings which make up 90% of the commercial building stock globally. Learn more about how Altair’s SmartWorks platform is enabling commercial building owner/operators and service providers to create and deploy smart and connected building solutions to affordably and efficiently collect large data sets on their building assets which can be used downstream to optimize the building’s efficiency.

Data Driven Models for HVAC Load Prediction
Consumers electric bills typically have two primary components: energy charges and demand charges. Demand charges are significantly costlier (10 times on average) than normal energy charges because of the inherent production cost to maintain the demand over a certain limit. This presentation proposes a model which can forecast upcoming demand charge events which in turn can help the consumers in optimizing their energy usages and hence help them avoid going to demand charge band.

Smarter ways for Optimizing Product Performance with the help of Altair’s Digital Twin Platform
"This presentation will feature the building blocks that form Altair’s Digital Twin Platform - a comprehensive and flexible toolbox that enables users to build a digital twin that best meets their specific needs.

With the help of the specific use case of TeamTao’s Autonomous Underwater Vehicle (AUV, the talk will “dive deeper” into approaches for making the development of complex systems smarter."

Driving Manufacturing Decisions with Machine Learning
Sheet-metal stamping is one of the most common manufacturing processes in the automotive industry, yet it requires experience to sort-out the most adequate and cost-efficient sub-process for every part. This presentation will demonstrate how Knowledge Studio was used to train a classification algorithm to accurately and consistently predict the correct stamping process for each new part.

Virtual Design and Testing of a Medical Autoinjector
Nolato specializes in polymer-based product design and manufacturing to virtually design a device to automatically inject medicines, such as insulin for diabetic patients. Within this presentation different aspects of the product design cycle are considered, including co-simulations of the device operation during the actual injection process, misuse in case of forceful bending or opening of the loading tray, and drop tests of the autoinjector. Based on Altair’s optimization technology, alternatives for the rib structure of the casing are investigated. To assure manufacturability, molding and assembly simulations are performed to identify and mitigate problems likely to occur throughout the process.


The Convergence of Simulation & Data
Jim Scapa brings more than 35 years of business growth, innovation and cultural stewardship to his role as founder, chairman and CEO of Altair.

Jim and two partners identified a need and formed Altair in 1985 with a focus on the then-new field of simulation using high performance computing. Today, through Jim’s leadership, the company employs more than 2,000 employees with 81 offices across 25 countries.

Altair is a leading global provider of simulation and optimization software, high performance computing technology, product development software and consulting, and data analytics solutions to a broad range of industry sectors including automotive, aerospace, government and defense, heavy equipment, ship building, energy, electronics, life sciences, architecture, finance, and construction. Growth has been achieved both through long-term nurturing of internal technology development, and by strategic acquisitions of complementary technologies which have been successfully integrated into Altair’s offerings.

Jim holds a bachelor’s degree in mechanical engineering from Columbia University and a Master of Business Administration from the University of Michigan.

Identifying and Capturing Business Growth Opportunities with Machine Learning
This presentation describes how machine learning is creating another disruptive methodology for Maxion Wheels as well as the returns the company is already realizing with this new approach in terms of quality, reliability and profitability.

Internal Noise Simulation/Emulation
Presenters: Rafael Morais Cunha, CAE Engineer in NVH, FCA Group & Frederico Luiz de Carvalho Moura, NVH CAE Leader, FCA Group


To make the driving experience more comfortable for passengers inside a vehicle compartment, in an increasingly shorter development cycle, predictive methods for the acoustic response characterization are used by vehicle engineering teams. The main purpose is to estimate the sound field in the car cabin.

The FCA NVH team identified in Altair tools an excellent opportunity to develop a complete solution for acoustics simulation. Supported by the Altair technical team, new methodology was created to convert frequency domain analysis into actual sound waves. This method was used to study the NVH steady-state acoustic performances. And development is in progress to simulate an acoustic environment to reproduce all vehicle noises in operational condition.

Using this methodology, it’s possible to virtually understand the acoustic behavior of vehicles, helping to make decisions in early design stages which could save design cost, time and also improve the driving experience for passengers.

Empathetic Engineering
Andiamo started with a belief that having a happy family is a basic human right. What happens when you build a company that is totally focused on the outcome of a happier family? What happens when you embed empathy into the engineering process?

Altair MBD: Celebrating Accomplishments, What's Next
Presenter: Michael Hoffmann, Sr Vice President of Math & Systems, Altair


In this presentation, Michael Hoffmann, Sr Vice President, shares the company’s vision & strategy for Altair’s Math & Systems tools for Model-Based Development – based on providing an open platform tightly connecting 0D to 1D to 3D modeling & simulation. At different stages of their product development cycles, engineers can model and simulate their increasingly complex products as multi-disciplinary systems by using equations, block diagrams, and/or 3D CAD geometry.
His scope includes Altair Compose™, Altair Activate™, Altair Embed™, and Altair MotionSolve™ as well as the multi-body motion capabilities in Altair Inspire™. He also spotlights several recent success stories about customers who have used these technologies to drive innovation through simulation.

The Wahoo KICKR Bike: Designing a Ride Experience that Blurs the Line Between Virtual and Reality
As more products enter the market that simulate real world experiences, consumers' expectations are rapidly increasing. To meet these rising expectations the hardware and controls required are becoming more complex while maintaining time to market and cost. To achieve this, efficiencies are required in the control’s development and hardware tools chains. Wahoo Fitness and Altair collaborated to create the new Wahoo KICKR Bike utilizing a Model-Based Design approach to controls development combined with a simulation driven design process to meet the high expectations of the bike trainer community.

Experience the Sound of Your Future EV Before it is Built
Achieving the targeted brand image in a short development cycle time with minimal or zero prototypes is a major challenge faced by EV companies. To overcome this challenge, Altair, HBK and Romax have jointly developed a simulation driven process coupled with capabilities to virtually experience the noise and vibration characteristics, giving engineers a way to obtain real time performance feedbacks as the vehicle is being developed.

This joint presentation on the proposed NVH development process covers a wide range of topics, including benchmarking, target setting, full vehicle and motor gearbox simulation loadcases, troubleshooting, optimization and stochastic analysis, and playback of simulation results for subjective evaluations, with a number of new technologies representing the global best practice in sound and vibration design and development. Join us to explore ways to control the sound and vibration characteristics of the vehicle, achieve the right sound, and avoid common NVH pitfalls, while accelerating time to market utilizing and experiencing virtual NVH prototypes.

Multi-Fidelity E-Motor Drive Solution
Presenters: Ulrich Marl, Key Account Manager for Electric Vehicle Motor-Feedback Systems, Lenord+Bauer & Andy Dyer, MBD Sr Technical Specialist, Altair


This presentation shows a modeling process to quantify the position/speed sensor (e.g, encoder) effects on an e-motor, and corresponding control system for a concept traction motor similar to the Nissan Leaf. The integrated solution of the e-drive is carried in Altair Activate as a system builder, using other Altair solutions e-motor solutions in FluxMotor and Flux to generate data for the e-motor itself, as well as the optimal current values for the Field-Oriented Contoller. The inverter is driven with efficient space vector pulse width modulation. The integrated solution also supports different levels of modeling fidelity for the system components, for example for the e-motor where either direct co-simulation with Flux for detailed finite element analysis or a reduced order model (ROM) using look-up tables. In this way, sensor design parameters can be evaluated within an accurate system of the e-drive to improve performance and efficiency.

Solving Challenges in Electric Motor Design
Presenter: Berker Bilgin, Assistant Professor of Engineering (ECE) at McMaster University and co-founder of Enedym Inc.


Electric motors in general, are made of certain parts, such as the stator, rotor, coils and magnets, and mechanical parts. These parts might look simple and bulky from the outside, however, the highly interrelated relationship between the geometry of these parts, characteristics of materials, and the way the current is controlled, defines the cost, size, efficiency, performance, and lifetime of the motor. In electric motor design, multidisciplinary aspects are highly interrelated. The effect of various parameters on the electromagnetic, thermal, and structural performance should be investigated together to come up with an optimized design. This is possible by developing the platforms where the multidisciplinary aspects are modeled in a software environment, as we are doing with Altair software.

Mobilizing Humanity in a New Way
In this presentation, Rob Miller, Chief Marketing Officer, discusses how Hyperloop Transportation Technologies and its partners are building a transportation system that moves people and goods at unprecedented speeds safely, efficiently, and sustainably. Through the use of unique, patented technology and an advanced business model of lean collaboration, open innovation and integrated partnership, HyperloopTT is creating and licensing technologies.

Founded in 2013, HyperloopTT is a global team comprised of more than 800 engineers, creatives and technologists in 52 multidisciplinary teams, with 40 corporate and university partners. Headquartered in Los Angeles, CA, HyperloopTT has offices in Abu Dhabi and Dubai, UAE; Bratislava, Slovakia; Toulouse, France; São Paulo, Brazil; and Barcelona, Spain. HyperloopTT has built a full-scale prototype in Toulouse, France and has signed agreements in the United States, UAE, France, India, China, Korea, Indonesia, Slovakia, Czech Republic, and Ukraine.
"

The role of finite element analysis in the development and optimization of novel sports head protection
Head health and safety has been an emergent theme within the scientific community, with an emphasis on mild traumatic brain injury. Protective equipment, such as helmets, provide a method of reducing the forces of impact that are delivered to the brain. However, innovation in this field has been limited and up until recently, the prevalent technology in most helmets on the market consisted in foam cushions and/or inflatable bladders. In fact, in 2006, several researchers estimated that improvements in helmet technology would become limited by the inherent properties of foam materials traditionally used in protective equipment. In 2015, VICIS announced a new impact mitigation concept based on buckling a filament structure. The first production helmet, the ZERO1, used a comprehensive suite of physical tests and additive manufacturing to implement a rapid and iterative design process. Finite element modeling (FEM) was introduced during the development of ZERO1, in a way that complimented the established fast-paced protype and test method.

FEM allowed for accurate simulations in a rapid and repeatable method. In addition to the non-linear geometric and material response, the majority of components in the ZER01 are soft bodies that experience large deformation. HyperMesh and Radioss provided the stable platform to evaluate impact performance as well as part durability. This study reviews the role and implementation of FEM in VICIS's second production helmet, the ZERO1-Youth, and the progression from component-level to system-level simulations.

Piloting SimSolid for Fast Directional Feedback to Reduce Product Development Timelines
"The analysis team at CNH is piloting Altair SimSolid™ as a design refinement tool solution for providing fast directional feedback to the engineering team.

CNH has performed some correlation studies against HyperWorks FEA for accuracy, and has established some criteria for identifying the appropriateness of SimSolid in our workflow. It has been determined that good correlation is attainable even with relatively large assemblies. The relative speed in SimSolid vs that of HyperWorks has shown to vary widely from study to study. This presentation shares CNH's experiences and recommendations with this software."

Collaboration between the Design Studio and Aerodynamics – the future
This presentation discusses Altair’s capabilities for analyzing and refining ideas during the concept stage of automotive design. The ultimate objective of all CAE is improved decision making and this is achieved by understanding the multiple behaviors of the widest variety of ideas as soon as possible in the design process. The presentation will illustrate how newly released Altair tools can be used to bridge the gap between Aerodynamics and the Design Studio to understand the performance of ideas as early as the sketch pad, using the skills and resources you already have in house. Altair’s vision for conceptual design in the future will be presented.

Rapid Exploration and Development of Intelligent & Efficient Vehicle Architectures
Altair's C123 process to create Simplified Loadpath Models (SLMs) for advanced body in white (BIW) design concepts provide a highly flexible and rapid platform to explore body structure loadpath alternatives and performance: weight optimization. The C2/SLM modelling process combines higher order Beam and Bush finite elements with coarsened Shell-meshed panels to represent the body structure. FCA US LLC has understood and validated the C2 process for a BIW, and correlated key structural performance metrics to higher order, detailed Finite Element (FE) models. While the benefits of loadpath optimization through Beam element parameter variation is well-documented, and applied extensively for these types of models, this presentation provides a better understanding of the sensitivities and influence of joint stiffnesses on key body structure attributes to promote more intelligent and efficient body structure joint designs.

Multi-Disciplinary Evaluation Of Vehicle Platooning Scenarios
Presenter: Christian Kehrer, Business Development Manager, Altair


This presentation discusses the multi-disciplinary evaluation of truck platooning, with the lead truck sending out acceleration, braking and steering signals for the following trucks to react accordingly. The benefits address safety requirements, fuel savings, traffic capacity and convenience.

The presentation demonstrates why platooning requires a holistic approach in the sense of connecting different modeling and simulation methods for a virtual evaluation of this system of systems.

Exoskeleton Modeling Using MotionSolve & Activate
Presenter: Nino Michniok, Mechanical Engineering Student, University of Kaiserslautern


The first part of the presentation shows the detailed process of building the multibody system of an actuated exoskeleton in MotionView/MotionSolve (MV/MS). The required movements are transferred to the corresponding joints by “Motions”. By this the exoskeleton can Stand Up, Walk diagonally across the floor and Sit Down. In the second part the “Motions” in MV/MS are replaced by controllers (position control) whichdeliver a certain torque to actuate the exoskeleton. The main topic here is the implementation of the co-simulation between Activate and MV/MS. In the end the presentation gives a quick outlook of similar works at the University of Applied Sciences Kaiserslautern in Germany.

Deep Reinforcement Learning for Robotic Controls
Presenter: Dario Mangoni on behalf of Alessandro Tasora, Engineering Professor and Digital Dynamics Lab Leader, University of Parma


This presentation address the use of the Proximal Policy Optimization (PPO) deep reinforcement learning algorithm to train a Neural Network to control a robotic walker and a robotic arm in simulation. The Neural Network is trained to control the torque setpoints of motors in order to achieve an optimal goal.

Vehicle Concept Design using Ride & Comfort Requirements for Truck & Trailer System Dynamics
Presenter: Kaustubh Deshpande, Chassis Engineer, Nikola Motor Company


This presentation describes Nikola Motor’s progression of design maturity from 1D CAE to 3D CAD/CAE for chassis system engineering work on their electric trucks. This progression spans from Voice of Customer to Functional Requirements to Functional Deployment to Structural Deployment.

Nikola Motor starts with a ‘First Principles’ model of their truck/trailer vehicle dynamics, then they perform system modeling & simulation with Altair Activate using quarter- and half-truck/trailer models. Block diagrams are created using both signal-based blocks and physical-based blocks (with Modelica).

Through this methodical process, Nikola Motor is able to derive more and better insight earlier in their development process regarding important vehicle characteristics for their trucks – ranging from ‘yaw rate of the tractor for loaded vs. unloaded trailer’ to ‘full-trailer load distribution sensitivity due to fifth wheel location’.

Work is in-progress to tighten the connection between their 1D CAE simulations in Altair Activate™ and their 3D CAE multi-body dynamics simulations.



Heavy Equipment Simulations: Multi-body, Hydraulics & DEM
Presenter: Ronald Kett, Technical Specialist, Altair


For a Stewart-Gough-Platform (Hexapod), various software tools were used to study and design highly dynamic hydraulic drives together with an overall system control. Calculation of Eigenfrequencies, control design and comparison, hydraulic system design, and overall simulation control were done in Altair Activate, the mechanics of the Stewart-Gough-Platform was taken from a CAD model into Altair Inspire Motion. The co-simulation between control + hydraulics and mechanics was performed using Activate and Altair MotionSolve. Altair HyperView and HyperGraph were used to analyze and visualize the results.

With the highly integrated solutions, the results could be achieved within a very short time. The different types of models (linear/simplified/full mechanics/hydraulics) made it possible to start with fast development cycles and finally achieve reliable results.


Real-Time Simulator of a Mobile Crane
Presenter: Arnold Free, Chief Innovation Officer and Co-Founder, CM Labs

Mechatronic systems and off-highway equipment design is rapidly evolving. With advanced control features, operator-assistance systems, and even full autonomy on the horizon, engineers are building complex systems simulation models to better understand their smart machines. Through the use of interactive and immersive VR software, systems models can be derived from high-fidelity engineering simulations and used for operator-in-the-loop, HIL, and SIL testing. Interactive virtual prototypes allow for human-factors test and measuring system performance in hyper-realistic virtual worksites. Simulation is also being used for AI based perception and motion planning in autonomous systems. Sales and marketing departments are now using interactive simulations and visualization to demonstrate products. The value of simulation is expanding rapidly in OEMs. CM Labs Simulations has recently partnered with Altair to bring together engineering simulation and interactive real-time systems models to perform all of the above. Validated multibody systems dynamics models from Altair MotionSolve can be used to build interactive models in Vortex Studio and combined with advanced real-time 3d graphics to create immersive live simulations with human interaction. With real-time simulation, it is also possible to connect to interactive control models and system level multidisciplinary simulations with Altair Activate. The presentation uses a mobile crane model as an example. It will demonstrate the process of translating the engineering models to real-time, creating realistic working scenarios and deploying in immersive simulators for operator in-the-loop testing and system demonstration.

Quadcopters: From System Modeling to Real-Time Simulator
Presenter: John Straetmans, Computer Engineering Student, University of Michigan

This project attempts to build an accurate real-time (RT) drone simulator through the full integration of a 1D functional model of a drone created in Altair Activate®, along with its corresponding geometry, into Unreal Engine via the Functional Mock-up Interface (FMI) standard. Then, VR, peripheral controllers, and other functionalities were added to the representation. This task was accomplished by modifying the Altair RT Vehicle Package, making it able to handle not just vehicles, but any system model located in an FMU for co-simulation, in this case a quadcopter model. Once the FMU containing the Altair Activate® drone model was successfully loaded into Unreal Engine, the tools provided by the application allow additional features to be added, such as VR support. By implementing an FMU, together with its geometry, into Unreal Engine, we can visually analyze the dynamics of the system to further verify the drone model and its performance. In the future, this integration process should be facilitated to automatically load any FMU following just a few steps.

Modelica Library for Real-Time Car Simulator
Presenter: Dario Mangoni, Engineering Professor, University of Parma


In the modern car industry, the advent of hybrid and electric vehicle systems is driving radical changes in the car electronics and software, demanding more and more advanced controlling techniques. Self-stopping, self-starting, ultimately self-driving cars are nowadays possible, because of the multitude of sensors, controller units and actuators making the vehicles “smart”. To simplify and make the interaction between the user and the machine more and more intuitive and user-friendly, a much broader and deeper investigation of different use scenario combined with the human interaction and intervention is critical. In this context, higher-detailed vehicle models are required to provide a valid prototyping tool which can be reliably used to test innovative controlling strategies, such as testing with the Man-In-the-Loop.

The Car Real-Time Modelica library proposed here aims at providing a highly valuable tool for the vehicle control system design and test. The key competitive advantages in this approach are in the Maple model-based compiler for supporting high-level of details modeling; the adoption of the Modelica language which allows a transparent and physical approach to the modeling activities and finally the Activate platform which offers real-time capabilities within an environment meant for the signal-based control design. To graphically validate the library results, a visualization framework for realistic real-time simulations that assures high-fidelity scenario in which to test user experience was also realized.

Multi-body Enhancements & Customer Successes
Presenter: Rajiv Rampalli, Sr VP in HyperWorks Core Development team, Altair


Altair’s products for multi-body system simulation (MBS) – MotionView, MotionSolve, and Inspire Motion – form a key component of multi-disciplinary system simulations. In this presentation, we will look back on several achievements this year, in the form of customer successes as well as recent enhancements to these products which significantly extend the depth and breadth of capabilities.

Some of these application examples also involve connections from MBS to other Altair technology or to 3rd-party technology such as to Altair OptiStruct (for flexible bodies and light-weighting) and Altair Activate (for hydraulics) and EDEM (for discrete element modeling of bulk materials).


System Simulation for HVAC
Presenter: Christian Kehrer, Altair [on behalf of Oliver Höfert, Simulation Engineer at Kampmann]


The increasing virtualization of engineering methods is inevitable. This also holds true for the design of systems that take care for the thermal well-being of humans, e.g. in buildings. If it comes to simulation of so-called HVAC (heating, ventilation, air conditioning) systems, very often high fidelity approaches like CFD are connected to it. In contrary, this contribution illustrates a 1D modeling approach of a heat exchanger in use of Altair Activate.

The presentation explains the implementation of the NTU (Number of Transfer Units) method in a system simulation environment. This includes a short description of the approach itself as well as its current limits. Based on the implementation of a single cell, differing network configurations for the evaluation of use cases of varying complexity will be shown.

ROMs For Battery Cooling Systems
Presenter: Stefano Benanti, R&D materials engineer, Hutchinson


Battery cooling (BC) systems are frequently composed of several parallel branches, each leading to and away from a series of cooling plates. As a correct flow distribution in each branch and overall pressure drop are a key requirement from every customer, numerical computation is extremely important from the first stages of each project: the number of components and their dimensions have a relevant impact on the total cost and it is thus necessary to quickly provide results already in the Request for Quotation (RFQ) phase.The 3D computation of such cases, albeit feasible, takes a relevant amount of time and makes it more costly (both in terms of computational power and of necessary software licenses) to quickly provide results. The goal is then to develop a quicker method to provide results and allow for the necessary optimization cycles.

Altair Activate® was chosen by Hutchinson to develop a library of ROMs representing different circuit components through which is possible to create 1D models able to respond quickly and precisely to such demands.

Integrated Systems Simulation from Requirements
Ed Wettlaufer, Technical Manager Mechatronics Group, Altair [on behalf of NAVAIR]


Government solicitations for proposals, or RFPs, for aircraft and airborne systems require preliminary designs with enough fidelity to accurately predict performance, in order to prove the design's ability to meet the Governments performance requirements. Modern high-performance computing provides the leverage to execute previously expensive analyses in areas such as computational fluid dynamics. The results of these high order analyses can be used to populate parameters in 1D systems models which can be easily coupled to medium order models from other disciplines. These capabilities allow the design engineer to rapidly iterate to levels of model maturity and accuracy not achievable years ago, resulting in high levels of confidence in the designs performance predictions in unprecedented time.

Moving forward, Altair engineers will employ Multiphysics and co-simulation to execute the Engineering and Manufacturing Development phase (EMD) for one subsystem of the preliminary design developed in the afore mentioned pre-acquisition phase.

Industrial IoT (IIoT) Networks Powered by 5G New Radio
The 4th industrial revolution or the digital enterprise will re-build the business models in various industries through connectivity. The drivers for 5G NR in industrial IoT (IIoT) networks are (i) increased productivity, (ii) digital transformation through wireless technology and (iii) the use of private networks. The industrial IoT (IIoT) network will be scalable in connectivity, and number of devices and will be designed to deliver optimal performance for all industrial applications using key LTE and 5G NR features like URLLC, mMTC, 5G positioning, time sensitive communications (TSC) and to a lesser degree eMBB.

This presentation begins with an overview, use cases and requirements for IIoT. The presentation discusses the foundation for URLLC in NR which was laid out in 3GPP Rel 15, mainly in support of IIoT, and URLLC enhancements in Rel-16, NR Positioning (Rel-16), TSC (Rel-16) and a version of NR known as NR-Light which is planned to be introduced in Rel 17. NR-Light aims to address use cases that cannot be met by NR eMBB, URLLC or mMTC. The system performance for an indoor ray traced factory using key 5G NR features like URLCC and TSC is presented.

Altair Inspire Studio Datasheet
Altair Inspire Studio is a new software solution that enables designers, architects, and digital artists to create, evaluate and visualize design ideas faster than ever before.

eBook: Learn Casting and Solidification with Altair Inspire Cast
This eBook is aimed at helping those engineers, foundrymen, and researchers to help gain knowledge in a short period of time and focus on obtaining a practical understanding of the software, basic knowledge of casting techniques and simulations as opposed to real-life experimentation.



eBook: Simulation-Driven Design with Altair Inspire
Inspire, the industry's most powerful and easy-to-use Generative Design/Topology Optimization and rapid simulation solution for design engineers empowers its users by creating and investigating structurally efficient concepts quickly and easily.

Practical Aspects of Multi-Body Simulation with HyperWorks
This book intends to serve as a guide helping you to get started with Multi Body Dynamics Simulation (MBD). It is more a quick reference to learn some of the basics – we deliberately refrain from theoretical discussions and too much math.

eBook: Introduction into Fit Approximations with Altair HyperStudy
A first eBook on DOE with HyperStudy has been released in the beginning of 2017. We hope you have appreciated it and learned useful knowledge helping you to improve your studies.

eBook: Design of Experiments with HyperStudy – A Study Guide
The objective of this eBook is to demonstrate how to use Altair HyperStudy to perform Design of Experiments (DOE), i.e. how to identify critical design variables and their contribution to the design performance.

eBook: Introduction to Explicit Analysis using Radioss – A Study Guide
This study guide aims to provide a basic introduction into the exciting and challenging world of explicit Finite Element Analysis.

eBook: Learn Dynamic Analysis with Altair OptiStruct
This study guide aims to provide a fundamental to advanced approach into the exciting and challenging world of Structural Analysis.

eBook: Introduction to Nonlinear Finite Element Analysis using OptiStruct
This study guide aims to provide a fundamental to advanced approach into the exciting and challenging world of Nonlinear Analysis.

eBook: Learn Thermal Analysis with Altair OptiStruct
Examples in the eBook – Learn Thermal Analysis with Altair OptiStruct

eBook: Learning Fatigue Analysis with Altair OptiStruct
The focus of this study guide is on Fatigue Analysis. As with our other eBooks we have deliberately kept the theoretical aspects as short as possible.

eBook: Learn Aerodynamic Analysis of Automobiles with Altair ultraFluidX
Altair ultraFluidX is an environment for doing External Aerodynamic CFD analysis using the Lattice Boltzmann Method (LBM) technique.

eBook: Learn Electromagnetic Simulation with Altair Feko
Altair Feko is an environment to solve electromagnetic problems. This book takes the reader through the basics of broad spectrum of EM problems, including antennas, the placement of antennas on electrically large structures, microstrip circuits, RF components, the calculation of scattering as well as the investigation of electromagnetic compatibility (EMC).

eBook: Flux2D Simulation of the Rotor Bar Breakage
This book is a step by step introduction in the building of finite element models using Altair Flux Student Edition 2018.1.2 for a squirrel cage bar breakage process and broken bar faults in an induction motor.

Advanced Hystheresis Simulation Using Preisach Model - Altair Flux
Newly introduced in Altair Flux, the hysteresis modeling based on Preisach's model enables a better evaluation of iron losses and remanence effects. Flux captures the complexity of electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux simulates magneto static, steady-state and transient conditions, along with electrical and thermal properties.


Taking Demagnetization Into Account - Altair Flux
Demagnetization simulation: considering the magnet demagnetization phenomena during the solving process simulation enables very accurate predict the device performance, and measure the impact on EMF and torque for instance. Flux captures the complexity of electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux simulates magneto static, steady-state and transient conditions, along with electrical and thermal properties.

Advanced e-Motor Design Dedicated Environment - Altair Flux FeMT
Designing an e-Motor has never been a simple task. Altair Flux, the solution for accurate electromagnetic detailed design, not only enables to quickly generate 2D and 3D motor models with its Overlays. Its new module now produces efficiency maps and automatic reports in the same appreciated FluxMotor supportive environment. Flux captures the complexity of electric motors and electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux simulates magneto static, steady-state and transient conditions, along with electrical and thermal properties.

Optimizing a Solar Car for Endurance and Energy Efficiency
Using Altair simulation software, Gurit supports Western Sydney University's Bridgestone World Solar Challenge team, helping them design the most efficient and aerodynamic
car possible, while ensuring driver safety
and adhering to class rules.

Webinar - Renault Altair SimSolid
Découvrez comment Renault a réduit de 90% ses temps de calculs grâce à Altair SimSolid !

Formation France Altair SimSolid #2 2019
Découvrez Altair SimSolid, le logiciel d'analyse des assemblages de CAO complexes qui fournit rapidement des résultats précis.

New Features of Altair Flux Electromagnetic and Thermal Simulations
Altair Flux captures the complexity of electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux simulates magneto static, steady-state and transient conditions, along with electrical and thermal properties.

e-Motor Concept Optimization Coupling with Altair FluxMotor and Altair HyperStudy
Designers starting with a blank page face an unlimited number of configurations and need to quickly select machines types. By coupling Altair FluxMotor to Altair HyperStudy design exploration and optimization solution, Altair offers designers a unique process to optimize their motor concept at an early design stage, defining their constraints and their objectives. A typical objective is to reach maximum global efficiency across a given duty cycle. Then, designers can select and focus on the topologies that fulfill the main specifications before going further in their design.

Model Export to Altair Flux
Once a designers has defined its motor concept in Altair FluxMotor and evaluated its global performance, he can perform more detailed analysis, exporting his machine in Altair Flux and working with high-fidelity models. Significantly, Flux enables more accurate prediction of motor behavior, with advanced losses computation, considering eccentricities, magnet demagnetization, effects of manufacturing process, and couple to Altair HyperWorks for multiphysics analysis.

e-Motors Comparison and Ranking with Altair FluxMotor
Quickly design and optimize concept machines while offering efficient comparison capabilities, Altair FluxMotor enables designers to make informed early strategic choices to select the most appropriate topologies.

Conductor Impedance and Near Field Simulation using Altair Flux
Altair Flux captures the complexity of electromechanical equipment to optimize their performance, efficiency, dimensions, cost or weight with precision, bringing better innovation and value products to end users. Flux PEEC is a dedicated environment to electrical interconnection modeling for EMC and power electronics applications, from small wire bonds and PCB tracks, up to busbars, power modules and large distribution switchboards. Flux PEEC evaluates parasitic inductances and capacitances, analyse the current distributions and resonances, including skin, proximity and capacitive effects and computation of Joule losses, radiated magnetic fields and Laplace forces.


Avec Altair SimLab, boostez votre productivité en réalisant vos maillages 3D les plus complexes sans perte de qualité !
Découvrez pourquoi Altair SimLab est la solution qualitative la plus rapide pour générer vos maillages 3D à partir de géométries très complexes.

eBook 構造最適化の実践(英語)
この学習ガイドは、さまざまな最適化手法の基本の学習を目的としています。 最適化の「刺激的な」世界について詳しく知りたい学生や入門者向けに書かれています。

Page: 1   2  3   4   5   6   7   8   9   10   11   12   13   14   15   16   17   18   19   20   21   22   23   24   25  

RSS icon Subscribe to RSS Feed

Be The First To Know

Subscribe